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Presentation Objectives

• Review Biogeochemical Process and Theory
– Enzymatic reductive dechlorination
– Biogeochemical reductive dechlorination

• Field Observations from Altus AFB
• Laboratory Studies
• Mechanics of Operation and Characteristic Observations
• Advantages and Implementation
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Two Principal Routes of Chlorinated
Ethene Destruction

• Enzymatic Reductive Dechlorination (ERD)
– Bacteria oxidize a labile organic and reduce

chlorinated compound directly

• Biogeochemical Reductive Dechlorination
(BiRD)
– Bacteria oxidize a labile organic and reduce aquifer

mineral matrix
– The reduced mineral matrix reduces the chlorinated

compound abiotically
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Biogeochemical Processes

Oxygen:
C7H8 + 9O2  →  7CO2 + 4H2O
            Gas          Gas

Nitrate Reduction: 
C7H8 + 7.2NO3- + 7.2H+  →  7CO2 + 3.6N2 + 7.6H2O
           Aqueous                    Gas      Gas
Iron Reduction:
CH2O + 4Fe3+(s) + H2O  →  4Fe2+ + CO2

- + 4H+

   Solid                      Solid     Gas
Sulfate Reduction:
CH2O + ½ SO4

2-  →   CO2 + ½ HS- (aq) + 2H2O
   Aqueous       Gas      Gas

Inert or Nonreactive
Biproducts

Reactive
Biproduct
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Sand grain in fuel contaminated
area with iron oxide removed

and quartz corroded.

Fe3+ is solid grain coating and
cannot be measured in water

Sand grain in non-
contaminated area with

iron oxide mineral coating

SEM images



6 6Promoting Readiness through Environmental StewardshipPromoting Readiness through Environmental Stewardship

Typical
Values
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Sulfate Overall Equations

CH2O + ½ SO4
2- → HCO3 + ½ HS- (ag) + H2O + H+

2FeOOH (s) + 3HS- → 2FeS (s) + So + H2O +3OH-

FeS (s) + So → FeS2  (s) 

Highly Reduced
And Reactive

Less Reactive

Reactants Needed to Make FeS

Products Monitored

Must be measured
in solid matrix not water
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Sulfate Reduction
Zone

Oxidized Fe3+

Visible Evidence
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Fe and S Mineral Measurements

• Practical methods have
been developed to
measure:
– Oxidized Fe3+

– Reduced FeS, FeS2, Fe2+

• Aqueous and Mineral

Intrinsic Bioremediation

Assessment (AMIBA)

• Usually we model in 3D
Altus AFB 3D model of FeS2

from fuel leak area.
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Porosity profile from density log borehole geophysics A to A’
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Soil phase TCE along line of section A to A’ (ug/Kg)
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Total reactive iron along profile A to A’ (mg/Kg)
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SO4 along profile A to A’
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S from FeS2 along profile A to A’ (mg/Kg)
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Profile of mineral FeS along line of section A to A’ (mg/Kg)
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Soil phase TCE along A to A’ (ug/Kg) with FeS area superimposed
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Mechanics and Characteristic
Observations

§ERD
§BiRD
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• Organic added as electron donor to drive aquifer
anaerobic

• After oxygen, nitrate, and sulfate reduction, chlorinated
ethanes can be used as electron acceptors

Mechanics of Enzymatic Reductive
Dechlorination (ERD)

Oxygen > Fe3+ >

First Used Last Used

Nitrate > Sulfate >   Methanogenesis

Chlorinated Ethenes

• Direct enzymatic reduction follows:
1/6C2HCl3 + 1/8CH3COOH + 1/4H2O è 1/6C2H4 + 1/4CO2 + ½H+ + ½Cl-
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• Characteristic observations:
– Stepwise systematic dechlorination

• PCE è TCE è DCE  è VC è ethene
• Should see increase in daughter products w/r time or distance

down-gradient

• Approach works best in
environments low in sulfate

Indicators of ERD
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Problems with ERD

• Organic-Contaminant-Bacteria mixing
• Viscous organic plugs permeability
• Chlorinated Ethene reduction not natural

– No natural analog so no preadapted bacteria
– Required bacteria not always present

• Long lag time
• Slow reaction kinetics
• Creation of daughter products including VC
• High amount of organic may be required

– Use up sulfate
– used for methanogenesis
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• Oxidation of soluble substrate (e.g., lactate) by
common sulfate reducing bacteria generates H2S

• H2S reacts with abundant native Fe3+ minerals to
make FeS

2FeOOH (s) + 3HS- → 2FeS (s) + So + H2O +3OH-

• FeS is very reduced and reactive and
spontaneously reduces chlorinated ethenes
– Secondary abiotic dechlorination of TCE

4/9FeS + C2HCl3 + 28/9 H2O → 4/9 Fe(OH)3 + 4/9SO4
2- + C2H2 + 3Cl- + 35/9H+

Mechanics of Biogeochemical
Reductive Dechlorination (BiRD)
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Abiotic TCE Dechlorination

• TCE dechlorinated
abiotically by artificial
FeS

• Fast rate (half life = 19
days)

• No daughter products

TCE
cis-DCE
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Destruction of TCE via FeS
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Microbial Production of FeS in
Microcosm
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• Mineral FeS must be present
• Adequate concentrations of mineral

Fe3+, SO4
2-, and organic needed to drive

production of FeS
• Disappearance of chlorinated ethene

without the buildup of daughter products

Abiotic TCE Reduction
Characteristics
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Aquifer Condition at preinjection with TCE contamination and native mineral Fe3+.
Sulfate may or may not be present in the system in sufficient quantities.
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Injection points are installed in the aquifer and a solution of organic and
sulfate (if needed) is introduced to the aquifer

Ground Water Flow Direction
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The injection point may be removed.  FeS forms from oxidation of organic using
SO4

2- as electron acceptor. HS- forms FeS by reaction with Fe3+.
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TCE  is reduced by FeS.  TCE down gradient from FeS barrier is cut off from
the source.  Upgradient TCE is swept into the barrier and dechlorinated.
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Theoretical Disadvantages of
BiRD

• SO4
2- may need to be added to subsurface

but will be removed by microbial
processes if sufficient organic added

• H2S is generated but reacts with sediment
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Theoretical Advantages of BiRD

• Reservoir permeability not affected
• Use of substrate for methanogenesis inhibited by electron

acceptor competition with sulfate
• High sulfate environments augment rather than impede
• Sulfate reducing bacteria ubiquitous

– bioaugmentation never necessary
• Rate of FeS production is rapid
• Rate of dechlorination is rapid
• Requirement for subsurface mixing reduced
• Deleterious byproducts not produced

– Vinyl Chloride
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The End

• Thanks for Your Attention!

• Thanks to AFCEE and Altus AFB

Jess Everett
Rowan University
201 Mullica Hill Rd
Glassboro, NJ 08028
everett@rowan.edu
 856-256-5326

Lonnie Kennedy
Earth Science Services
PO box 720438
Oklahoma City, OK 73172-0438
lkennedy@telepath.com


